

#### AT&T Labs-Research

# Adaptive Learning: From Supervised to Active Learning of Statistical Models for Natural Language and Speech Processing

Giuseppe Riccardi\*
Dilek Hakkani-Tür^
Gokhan Tur\*

- \* Currently with University of Trento, Italy
- ^ Currently with ICSI,USA
- Currently with SRI, USA

Eurospeech 2003, Geneva

## Acknowledgements

Mazin Rahim Robert Schapire Narendra Gupta Jerry Wright

## Outline

- Learning Dimension:
  - Passive vs. Active Learning
  - Supervised vs Unsupervised Learning
  - Combining Active and Unsupervised Learning
- Application Dimension:
  - Classification (Text categorization, Part of Speech Tagging, Call Classification,...)
  - Automatic Speech Recognition
  - Syntactic Parsing

## Learning

- Describe (natural) phenomenon
  - Apple falling off the tree (XVII century)
  - NASDAQ (XX century)
- Data collection (Experiment)
  - Experiments vs Measurements
  - "Do you like candidate X?"
  - "Do you like candidate X or rather Y?"
- Modeling data (Prediction)
  - What if I jump off a tree?
  - Is candidate Y going to win the election?

## Passive Learning

- Typical Class Distribution
  - Zipf's Law: Frequency x Rank = Constant
  - Sample infrequent examples (tail of the distribution)



## Passive Learning

- Typical Learning Curve
  - "no data like more data"







## Data Driven Learning

- The Eighties: (almost) no data, prior knowledge
- The Nineties: Data Driven Models
  - DARPA projects (ATIS, WSJ)
  - "no data like more data"
- Third Millenium
  - Terabytes of Data ("Data Divide between University and Private Research")
- Supervised Learning (learning from examples)
  - Small data set
  - Human intervention (labeling or annotation)
  - Delayed Response

## Maximum Likelihood (1)

- ◆ The General setting
- Data Samples (Measurements) i.i.d.
  - $X = \{x_1, ..., x_N\}$
- Underlying probability law p(X) with parametersθ
- $\bullet P(X| \theta) = \prod_k p(x_k| \theta)$ 
  - (log) Likelihood function

## Maximum Likelihood (2)

#### Example: Binary random variable

$$X = \{x_1, x_1 \cdots, x_N\}$$

Training set of data samples

$$L(X,\theta) = P(X \mid \theta)$$

Likelihood Function

$$\log L(X, \theta) = \log(p^{N_1}(1-p)^{N_2}) = N_1 \log p + N_2 \log(1-p)$$

$$\frac{d \log L(X, \theta)}{d \theta} = 0$$

Likelihood Maximization

$$p = \frac{N_1}{N_1 + N_2}$$

## Maximum Likelihood (3)

Example: Language Modeling

$$P(W) = P(w_1 w_2 \cdots w_N)$$

$$= \prod_{i} P(w_i \mid w_1 \cdots w_{i-1})$$

$$= \prod_{i} P(w_i \mid w_{i-n+1} \cdots w_{i-1})$$

#### Example: Language Modeling

#### **Data Sparseness Problem**

- Large Vocabulary (|V| ~ 50K)
- Generalization
  - I would like {a, to, the, this,..}
- Zipf's Law (frequency of n-gram < 1/n)

#### Maximum Likelihood (ML) Probability

$$P(w_i | w_{i-n+1},..., w_{i-1}) = \# w_1 w_2 ... w_i / \# w_1 w_2 ... w_{i-1}$$

#### Discounted ML Probability

$$\hat{P}(w_i \mid w_{i-n+1},...,w_{i-1}) = \alpha(w_i \mid w_i,...,w_i) P(w_i \mid w_{i-n+1},...,w_{i-1})$$

## Discriminative Training

- The goal of ASR is to minimize the probability of error. This does not necessarily imply maximizing  $P(x \mid \Phi)$ .
- Discriminative Training methods are applied to maximize a function that provides better discrimination between classes.
- Automatic Speech Recognition
- ♦ Text Classification

#### **Adaptive Learning**

#### Describe (natural) phenomenon

- NASDAQ (Measurements over a month in April)
- $X = X_1, X_2, X_3, ..., X_N$
- What if a war is going on?
- $X = X_1(t), X_2(t), X_3(t), ..., X_N(t)$
- Time dependent statistics
  - Stationary (e.g. seasonal effects)
  - Bursty (e.g. unforeseen events)

#### Adaptive Learning

- Prediction is based on current estimates (input) and adapts (output).
- State of the system

## **Adaptive Learning**

- Definition
  - Adapt fast to changes in feature statistics
  - Learn new events
  - Minimize supervision
- Instead of assuming a fixed and given training data as in the passive learning, the data is dynamic and determined by the learner itself.

## **Adaptive Learning**

- Methods for adaptive learning:
  - Active learning
  - Unsupervised learning
  - Combining active and unsupervised learning

#### Outline

- Algorithm Dimension:
  - Passive vs. Adaptive Learning
  - Active Learning
    - Certainty-based
    - Committee-based
  - Unsupervised Learning
  - Combining Active and Unsupervised Learning



## Active Learning

(static)

Sample space T is very large and finite (size N)

## Select $K_{min}$ examples from T to label such that $\Delta\Phi$ is maximized on a random test set

- ◆ The number of combinations of k examples is very large (N!/k!(N-k)!)
- The number of permutations of k examples is very large (k!)

## **Active Learning**

(dynamic)

- Sample space T is very large (size N)
- At time t there are K(t) samples available

At time t, for a given K(t) in T,

Compute  $K_{min}$  examples from K(t) to label such that  $\Delta\Phi$  is maximized on a random test set

◆ Compute → Select from a given T

## Ranking Sample Space (1)

- $\mathbf{T} = \{\mathbf{u}_i\}$ 
  - Set of all examples
- $Q(u_i)=j$ 
  - Compute confidence scores for each example
    - Probability that example  $u_i$  is correctly labeled by the current model  $\lambda$
  - Sort
- Selective Sampling S()
  - $S(T)=(1,...K_{min})$
- ◆ Label S(T)



TASK: Locating a boundary on the unit line (x-axis) interval.









28

## Informativeness of Speech Samples



## Selecting K<sub>min</sub>

("less is more")

Active Learning as optimization problem



## **Applications**

- Classification Tasks:
  - Text Categorization
  - Call Classification
  - Part of Speech Tagging
  - Word Segmentation
  - Information Extraction
- Automatic Speech Recognition
- Syntactic/Semantic Parsing
- Machine Translation

## Outline

- Algorithm Dimension:
  - Passive vs. Adaptive Learning
  - Active Learning
    - Certainty-based
    - Committee-based
  - Unsupervised Learning
  - Combining Active and Unsupervised Learning



## Certainty-based Active Learning for Classification

- Train a base classifier (SVM, Boostexter, etc.)
- While (labelers/data available) do
  - Classify the pool of unlabeled data
  - Sort them according to their informativeness,  $I(\Phi)$
  - Select the top k of them
  - Label and add the selected ones to the training data
  - Re-train the classifier
  - Update the pool

## Certainty-Based Active Learning for SLU



## Classification

- Definition: The task of assigning objects to 2 or more classes.
- Example Task / Unit
  - Part-of-Speech Tagging:
    - Word (e.g. going/VBG)
  - Topic Classification (Text Categorization):
    - Document
  - Call-type Classification:
    - Utterance Transcription (often ASR output)

## Classification Methods

- Rule-based approaches
  - Mostly an expert writing rules for the application based on world/app knowledge
- Machine Learning approaches
  - Employing one of the machine learning algorithms (decision tree, naïve bayes, boosting, SVM, etc.) using the application data
- Hybrid approaches
  - Combining rules with data
  - Learning (probabilities of) rules from data

#### **Decision Trees**

- Classify an object starting from the top node, testing its question, branching to the appropriate node, repeat until it is a leaf.
- Training is based on splitting criterion:
  - Typically information gain, which computes the reduction in uncertainty.

$$G(a) = H(t) - (p_L \times H(t_L) + p_R H(t_R))$$

where a is the feature, the split is to be decided,  $t_{(R|L)}$  is the distribution of the (right|left) node.



## An Example Decision Tree

 Text categorization using a binary classifier with unigram features, deciding whether the class is c (Tellme(Balance)), or not



### Naïve Bayes

#### Using the Bayes rule:

$$\hat{c} = \underset{c_i}{\operatorname{arg\,max}} P(c_i \mid o) = \underset{c_i}{\operatorname{arg\,max}} \frac{P(o \mid c_i) \times P(c_i)}{P(o)} = \underset{c_i}{\operatorname{arg\,max}} P(o \mid c_i) \times P(c_i)$$

where o is the object to be classified.

Assuming conditional independence:

$$P(o \mid c_i) = P(a_1,...,a_n \mid c_j) = \prod P(a_j \mid c_i)$$
 where  $a_j$  is a feature for the object  $o$ .

## An Example Naïve Bayes Classifier

Text categorization using unigram features (bag-of-words)

$$arg \max P(c \mid sent) = arg \max P(sent \mid c) \times P(c)$$

Sentence: "balance request"

$$P(sent \mid c) = P(word_1, ..., word_n \mid c) = \prod_j P(word_j \mid c)$$

$$score_{c,sent} = P("request" | c) \times P("balance" | c) \times P(c)$$

$$P(c \mid sent) = \frac{score_{c,sent}}{\sum_{i} score_{c_{i},sent}}$$

## Boosting

- Given the data  $(x_1, y_1), ..., (x_m, y_m)$  where  $x_i \in X, y_i \in Y$
- Initialize the distribution  $D_{i}(i)=1/m$
- For each iteration t=1,...,T do
  - Train a base learner,  $h_{tt}$  using distribution  $D_{t}$ .
  - Update

$$D_{t+1}(i) = \frac{D_t(i) \times e^{-\alpha_t \times y_i \times h_t(x_i)}}{Z_t}$$

where  $Z_t$  is a normalization factor and  $\alpha_t$  is the weight of the base learner, computed using the error rate of that learner.

The output of the final classifier is defined as:

$$f(x) = \sum_{t=1}^{T} \alpha_t \times h_t(x)$$

$$H(x) = sign(f(x))$$

## Support Vector Machines

Given a set of examples belonging to two different classes, the Support Vector Machine (SVM) tries to separate them with the maximum margin (Vapnik).





#### **Evaluation Metrics**

$$Accuracy = \frac{\#correctly\_classified}{\#examples}$$

Classification Error Rate (CER) = 1 - Accuracy

# Assuming thresholding using the scores

|                                                           | decision is correct | decision is incorrect |
|-----------------------------------------------------------|---------------------|-----------------------|
| Score>=Threshold                                          | а                   | b                     |
| (accept)                                                  |                     |                       |
| Score <threshold< td=""><td>С</td><td>d</td></threshold<> | С                   | d                     |
| (reject)                                                  |                     |                       |

Recall = 
$$\frac{a}{a+c}$$
 =  $\frac{\# correct}{\# correct}$ 

Precision =  $\frac{a}{a+b}$  =  $\frac{\# correct}{\# accepted}$ 

F-Measure =  $\frac{Recall \times Precision}{\alpha \times Recall + (1-\alpha) \times Precision}$ 

False-Rejection =  $\frac{c}{c+d}$  =  $\frac{\# correct}{\# rejected}$ 

False-Acceptance =  $\frac{b}{a+b}$  =  $\frac{\# wrong}{\# accepted}$ 

## **Error Modeling**

- Needs an informativeness measure to sort the candidate unlabeled utterances
- Use confidence scores output by the learners.
- lacktriangle e.g. for the Naïve Bayes classifier, it is nothing but  $P(c_i \mid o)$
- Alternative usages:
  - Confidence of the top scoring class (e.g.  $\max P(c_i \mid o)$ )
  - Difference in the confidences of top two scoring classes
  - KL(P(*C*|*X*)||P(*C*))



### Selected Bibliography for Certainty-Based Active Learning

- Lewis and Catlett, ICML'94 (Text Categorization)
- Cohn et al., ML'94 (Text Categorization)
- Thompson et al., ICML'99 (Parsing and Info. Ext.)
- Schohn and Cohn, ICML'00 (Text Categorization)
- Hwa, EMNLP/VLC'00 (Parsing)
- Hakkani-Tür et al., ICASSP'02 (ASR)
- Tang et al., ACL'02 (Parsing)
- Sassano, ACL'02 (Japanese Word Segmentation)
- Tur et al., ICASSP'03 (Call Classification)

## **Text Categorization**

- Lewis and Catlett ICML'94
- AP articles, 10 classes
- Classifier: Decision Trees
- Used a simple probabilistic classifier for sample selection
- Reduced the amount of human-labeled data needed by a factor of 10.

### Parsing

- ◆ (Hwa, EMNLP/VLC, 2000)
- Criterion: Tree Entropy (TE)
  - Parse the sentence, s
    - i.e. get multiple parse trees,  $v \in V$ , with confidences, p(v)
  - Compute  $TE(s) = -\sum_{v \in V} p(v) \log p(v)$
  - Pick the sentences with high TE values
- Decreased the amount of training data needed to achieve the same performance by 36%



## Human-Machine Spoken Dialog



### Conversational Speech

- How May I Help You?
- hello [ uh ] [ .clrt ] excuse me I I would like I don't understand my bill I
- Okay. What is your question?
- what is my what
- I'm sorry, I didn't understand that. How may I help you?
- well [eh] I don't understand certain items on my bill like [uh]
  [.lps] it says summary toll calls [.clrt] excuse me 87 cents now
  I get listed for toll calls th- [eh] there's [uh] [um] [.lps]
  there's a whole list of [uh] toll calls that I made why do they
  put this one separately...

## Voice-Enabled Services Complexity

Command
And
Control

(e.g., Simple call
Routing; VRCP;
Voice dialing)

AT&T VRCP

Prompt
Constrained
Natural
Language

(e.g., Travel
Reservations,
Finance,
Directory asst)

E\*Trade

United Airlines

Free-form
Natural
Language
Dialogue

(Customer Care,
Help Desks,
E-Commerce)

ACS 0300

IRS

Complexity and Functionality

1990

2002

## Data Driven Learning

(Speech and Language)

- ◆ Input: Speech Utterance u<sub>i</sub>
- Automatic Speech Recognition
  - Gaussian Mixture Modeling (HMMs)
  - N-gram estimations (P(w<sub>i</sub>|w<sub>i-n+1</sub>, ..w<sub>i-1</sub>))
- Semantic Associations
  - $\blacksquare T = \{w_i, c_j\}$
  - Feature Extraction (#(f<sub>k</sub>,c<sub>i</sub>))
    - (Salient) N-grams → Bayes, Boosting, SVM Classifiers)
- Output: Model λ
  - Speech recognition:  $\lambda_{ASR}$ :  $u \rightarrow w$
  - Semantic Associations:  $\lambda_{NL}$ : w  $\rightarrow$  c

#### **Corpus Statistics**





#### Ways to say "question about my bill"

- 105 question about my bill
- 63 question on my bill
- 57 calling about my bill
- 43 talk to somebody about my bill
- 41 talk to someone about my bill
- 32 questions about my bill
- 30 problem with my bill
- 23 speak to someone about my bill
- 22 calling about a bill
- 20 calling about my phone bill
- 16 questions on my bill
- 16 question about a bill
- 15 talk about my bill
- 11 question about my phone bill
- 11 question about my billing
- 11 discuss my bill
- 10 speak with someone about my bill
- 10 calling about my billing
- 9 problem with my phone bill
- 9 calling about my telephone bill
- 8 speak to someone in billing
- 8 question about the bill
- 7 speak to somebody about my bill
- 7 speak to a billing
- 7 question on my phone bill
- 7 calling regarding my bill
- 7 calling concerning my bill
- 6 talk to somebody in billing
- 6 questions about my billing
- 6 question on my billing

- 6 problem with my billing
- 6 information about my bill
- 6 calling about my A T and T bill
- 5 talk to someone about my phone bill
- 5 talk to someone about a bill
- 5 talk to somebody about my billing
- 5 talk to somebody about a bill
- 5 speak to someone in the billing
- 5 speak to someone about a bill
- 5 questions on my billing
- 5 question on the bill
- 5 question on a bill
- 5 guestion my bill
- 5 calling in regards to my bill
- 5 calling about the bill
- 4 talk to someone about my telephone bill
- 4 talk to somebody about my account
- 4 talk to billing
- 4 speak with someone in billing
- 4 question about my telephone bill
- 4 information on my bill
- 4 calling regarding my statement

#### . . . . . . . . . . . . .

- 1 talk to someo- to someone about my moms telephone bill
- 1 question about the new A T and T billing
- 1 calling for Bertha Fitz\*\*\*\*\* about a b- statement

#### Total 1083 variations in 1912 matches



#### **Basic Formulation of ASR**

Given an acoustic observation sequence  $\mathbf{X} = X_1, X_2, ..., X_n$  and a specified word sequence  $\hat{\mathbf{W}} = w_1 w_2 ... w_m$ , then

$$\hat{\mathbf{W}} = \underset{\mathbf{w}}{\operatorname{arg max}} P(\mathbf{W} \mid \mathbf{X}) = \underset{\mathbf{w}}{\operatorname{arg max}} \frac{P(\mathbf{W})P(\mathbf{X} \mid \mathbf{W})}{P(\mathbf{X})} = \underset{\mathbf{w}}{\operatorname{arg max}} P(\mathbf{W})P(\mathbf{X} \mid \mathbf{W})$$

P(X|W) is the acoustic modelP(W) is the language model

#### **ASR - Overview**

Given the acoustic observation sequence  $A = a_1, a_2, ..., a_m$ , what is the most probable word sequence  $W = w_1, w_2, ..., w_n$ ?



$$\hat{W} = \arg \max_{W} P(W \mid A) = \arg \max_{W} \frac{P(A \mid W)P(W)}{P(A)}$$

$$= \arg \max_{W} P(A \mid W)P(W)$$

Acoustic Language
Model Model
56

#### **Feature Extraction**

• Extract features from the speech signal that are relevant for recognition.



## **Acoustic Modeling**

- **♦** *P*(*A*/*W*)
- To extract sub-word units from the acoustic features.
- State-of-the-art systems are based on the use of Hidden Markov Models (HMMs).
- For an extensive discussion of HMMs, see Rabiner 1989.

### A Very Brief Introduction to HMMs

Markov Models:



- $\Pi(\text{cloudy})=0.2$
- O=cloudy cloudy rainy sunny
- $P(O|model) = 0.2 \times 0.7 \times 0.2 \times 0.5 = 0.014$

#### Hidden Markov Models





Observations are probabilistic functions of the states.

#### Additional Elements:

- B={b<sub>i</sub>(o<sub>j</sub>)}, the observation symbol probabilities, for observing o<sub>j</sub> at state i.
- e.g.:  $b_1(sunny) = 0.3$

#### **Observation Evaluation**

- What is the probability of the observation sequence, O, given the model parameters?
- 1. Initialization:

$$\alpha_1(i) = \pi_i b_i(o_1), \quad 1 \le i \le N$$

2. Induction:

$$\alpha_{t+1}(j) = (\sum_{i=1}^{N} \alpha_{t}(i)a_{ij})b_{j}(o_{t+1}), \mathbf{3}$$

 $1 \le t \le T - 1, \ 1 \le j \le N$ 

3. Termination:

$$P(O \mid \Phi) = \sum_{i=1}^{N} \alpha_{T}(i)$$

#### **Trellis**



Observation

#### Other HMM Problems

- The Viterbi Algorithm: What is the most probable state sequence, given the observation sequence, O, and model parameters  $\Phi = (A,B,\Pi)$ ?
- The Baum-Welch Algorithm: How do we adjust the model parameters  $\Phi$ =(A,B,Π), to maximize  $P(O|\Phi)$ ,  $O=o_1,...,o_T$ ?

## Language Modeling

- Probability of word sequences.
- W= "I wanna fly to Boston"

$$P(W) = P(I) \times P(\text{wanna} \mid I) \times ... \times P(\text{Boston} \mid I, \text{wanna}, \text{fly, to})$$
$$= P(I) \times P(\text{wanna} \mid I) \times ... \times P(\text{Boston} \mid \text{to})$$

Maximum likelihood estimates

$$P(\text{Boston}) = \frac{C(\text{Boston})}{N}$$
  $P(\text{Boston} \mid \text{to}) = \frac{C(\text{to}, \text{Boston})}{C(\text{Boston})}$ 

•  $C(w_i,...,w_j)$  is the number of times word sequence  $w_i,...,w_j$  occurs in the training text.

## Smoothing

- What about the word sequence:
  W="I wanna fly to Geneva"
  if C(to,Geneva) = 0, as it never occurred in the training set?
- Aim: To assign a non-zero probability to previously unseen sequences.
- Robustness to unseen data.

## Smoothing - Approaches

#### Add One

$$P_{smooth}(w_i) = \frac{C(w_i) + 1}{N + V}$$

$$P_{smooth}(w_i) = \frac{C(w_i) + 1}{N + V} \qquad P_{smooth}(w_i \mid w_{i-1}) = \frac{C(w_{i-1}, w_i) + 1}{C(w_{i-1}) + V}$$

#### Interpolation

$$P_{smooth}(w_i | w_{i-1}) = \lambda \times P(w_i | w_{i-1}) + (1 - \lambda)P(w_i)$$

#### Back-off

$$P_{smooth}(w_i \mid w_{i-1}) = \begin{cases} P(w_i \mid w_{i-1}), & \text{if } C(w_{i-1}, w_i) > 0 \\ \alpha \times P(w_i), & \text{otherwise} \end{cases}$$

## Adaptation

- Robustness to mismatched conditions, like variations in the:
  - Microphone
  - Environment noise
  - Speaker
  - Topic, etc.

e.g.: Speaker dependent versus speaker independent systems.



### **Adaptation Schemes**

Example: Language Modeling

Interpolated Model

$$P(w_i \mid h) = \alpha(h)P_I(w_i \mid h) + (1 - \alpha(h))P_A(w_i \mid h)$$

Cache Language Models

$$P_{cache}(w_i \mid w_{i-n+1}...w_{i-1}) = \lambda_c P_s(w_i \mid w_{i-n+1}...w_{i-1}) + (1 - \lambda_c) P_{cache}(w_i \mid w_{i-2}w_{i-1})$$

## Acoustic Model Adaptation

- Maximum a Posteriori (MAP)
  - Consider also the prior distribution for the parameters of the model.

$$\hat{\Phi} = \arg \max P(\Phi \mid W) = \arg \max P(W \mid \Phi)P(\Phi)$$

$$\Phi$$

- Useful when the adaptation data is limited.
- Maximum Likelihood Linear Regression (MLLR)
  - A linear transformation of the model parameters are estimated.

### Language Model Adaptation

Cache-based Language Models

$$P(w_i \mid w_{i-1}) = \lambda \times P_{cache}(w_i \mid w_{i-1}) + (1 - \lambda) \times P_{global}(w_i \mid w_{i-1})$$

- $P_{cache}(w_i|w_{i-1})$  is estimated from a cache, which contains the most recently dictated words.
- Topic Adaptation
  - Build topic dependent language models from the topic clusters.
  - Interpolate the topic dependent models.
- Dialog state dependent language models
  - Build a state dependent model using the previous responses to the current" prompt.

#### **ASR** - Evaluation

Word Error Rate (WER)

WER = 
$$\frac{\text{# Ins+# Del+# Subs}}{\text{# Ref. Words}}$$

REF: i'd like to review my services that i have

HYP: i'd like to have a review the services i have

Word Accuracy (WA)

WA = 1 - WER

72

#### **ASR Confidence Scores**

• Probability of utterance  $u_i$  being correctly recognized by current model  $\lambda$ 



#### **ASR Confidence Scores**

- Mark each phone/word/utterance with a score of confidence.
- ASR word confidence scores for
  - Selective Sampling for Active Learning
  - Probability Estimation for Unsupervised Learning
  - Selective Sampling for Unsupervised Learning
- Word confidence scores and word confusion networks (sausages) for improving
  - natural language understanding
  - machine translation
  - named entity extraction

#### Likelihood Ratio Tests

Likelihood ratio (LR) test (Lleida and Rose, 1996)

$$LR(A, \lambda^c, \lambda^a) = \frac{P(A \mid \lambda^c)}{P(A \mid \lambda^a)} \gtrsim \tau$$

- A: a sequence of feature vectors
- λ<sup>c</sup>: target model
- λ<sup>a</sup>: alternative model
- Word level confidence scores are obtained by combining LR scores.
- Requires training.

# Word Graph Based Approaches

- Word-Graph-based Approaches
  - Derived from the lattice output of ASR.
  - No need for training
- ◆ASR lattices → Sausages (word confusion networks)
  - · (Mangu, et al., 2000)
  - Word posterior probability estimates on the sausages + word confidence scores
- (Hakkani-Tür and Riccardi, 2003)

# **Hybrid Approaches**

- Approaches that use:
  - Acoustic features
  - Word lattice features
  - Linguistically motivated features
  - to come up with word confidence scores (*eg*: Zhang and Rudnicky, 2001)
- Requires training.

Algorithm



#### Pivot alignment:



 $l_{5}, c_{10}$ 

l<sub>i</sub>: labels

c: costs

p<sub>i</sub>: posterior probabilities

# Algorithm

**Compute** the posterior probabilities of all transitions on the lattice

**Select** a path as a baseline [random/best/longest path]

For all transitions in the lattice,

Find the most overlapping position (wrt start and ending state times) on the pivot/baseline

If a transition with same label already occurs there, increment its posterior

Otherwise, insert a new transition to the pivot/baseline

# Algorithm Details

- Time information is not necessary, but beneficial.
  - Time info is estimated as approximate state location.
- The labels on arcs can be words, phones, semantic tags, etc.
  - E.g. slot confidence scores
- Algorithmic complexity:O(N\*M)
  - MEMORY: smaller than word lattices (7% of lattices).
  - TIME: much faster than sausage computation of Mangu et al. (2000), which runs in  $O(N^3)$ .
  - N: Number of arcs in the lattice
  - M: Number of arcs on the best/longest/random path.

#### **Evaluation of Confidence Scores**

- ◆ Test Set: 2,174 utterances (~31K words) form AT&T HMIHY?<sup>SM</sup> spoken dialog system test data.
- Baseline: Best Path
- Select a threshold, accept as correct recognition if confidence score is bigger than threshold.
- ◆ False Acceptance Rate (FA)

$$FA = \frac{\text{# of misrecognized words that are accepted}}{\text{# of words that are accepted}} \times 100\%$$

False Rejection Rate (FR)

$$FR = \frac{\text{# of correctly recognized words that are rejected}}{\text{# of words that are rejected}} \times 100\%$$

#### False Acceptance vs. False Rejection

- •ASR 1-best posteriors
- •Augmented ASR 1-best posteriors (using word lattices)
- •Pivot alignments using time
- •Pivot alignments without time



# Percent Correct/Misrecognition





# Active Learning for Automatic Speech Recognition

- ◆(Hakkani-Tür et al., ICASSP 2002)
- ◆(Kamm, Ph.D. Thesis, 2004)

# Active Learning for ASR

#### Goals:

- Reduce the amount of transcribed data needed without reducing accuracy.
- Optimize the performance using a given set of transcribed data.



#### **Utterance Scores**

- The algorithm is independent of the way utterance scores are computed, as long as they are good quality.
- We compute utterance scores, using word confidence scores.  $U=w_1,...,w_k$

■ Mean confidence score
$$c(U) = \frac{1}{k} \sum_{i=1}^{k} c(w_i)$$

Voting

$$c(U) = \frac{1}{k} \sum_{i=1}^{k} f(c(w_i)) \text{ where } f(c(w_i)) = \begin{cases} 1, & c(w_i) > \text{threshold} \\ 0, & \text{otherwise} \end{cases}$$

## Active Learning Expt(1)

- **◆** Data collected from HMIHY?<sup>SM</sup> field trials
  - ~100K utterances
- All utterance turns (80 prompts)
- Bootstrap data for LM and scoring
  - HM data collection
- Data is pooled and sampled
- No time ordering constraint

89

# Active Learning Expt(1)

- ullet Halve data size requirement for a given  $\Phi$
- Improve over asymptotic performance



# Active Learning Expt (2)



# Why does Active Learning work?

- Language modeling:
  - discover new words
  - discover new n-grams



# Active Learning Expt(3)

- Data is time ordered and time-dependent data bin is used for selective sampling
- Time window for selective sampling
- Data is "forgotten" after n days
- Experiment close to operation modus operandi



# Active Learning Expt(3)



## Active Learning Expt(1)

- Data collected from TTS Help Desk Trial
  - 8K utterances
  - Average length 5 words
  - Channel distortions (not matched AM)
- All utterance turns
- Bootstrap data for LM and scoring
  - Web-Mail data
- Data is pooled and sampled
- No time ordering constraint

# Active Learning Expt(2)

(TTS Help Desk)





Human-Machine Spoken Dialog



### Understanding User Intent

- Greeting Prompt: AT&T ... How may I help you?
- User: I have questions about my bill
  - Call-type: Explain(Bill)
- Specification Prompt: OK, what is your question?
- ◆ User: I have a couple of numbers I wanna check out
  - Call-type: Explain(Bill\_UnrecognizedNumber)
- Confirmation Prompt: Would you like to look up a number you don't recognize on your bill?
- User: Several of them
  - Call-type: Yes

#### Call Classification

- Tur, Schapire, and Hakkani-Tür, ICASSP'03
- ◆56 call types in total (0300)
- Classifier: Boosting
- Fixed pool



#### Call Classification

- Tur, Hakkani-Tür, and Schapire; ICASSP 2003
- ◆56 call types in total (0300)
- Classifier: Boosting
- Dynamic Pool (1/4 of the candidate utterances selected at each iteration)



#### **Unbalanced Data Problem**



#### **Unbalanced Data Problem**

- Active learning changes the prior probabilities significantly.
- Halved the data from 10K to 5K by ignoring the utterances with calltypes occurring more frequent than a certain threshold.

| Training Set | Test Set       |
|--------------|----------------|
|              | Classification |
|              | Error Rate     |
| Random 5K    | 29.12%         |
| Biased 5K    | 30.81%         |

Biasing distributions hurt the performance!

#### One Solution

- This is not a paradox. If we can find a solution to this problem, active learning may perform better.
- Lewis and Catlett, ICML'94 suggested:
  - Changing priors while training
  - Making false-positives more costly than false-negatives (C4.5 supports this)

#### Outline

- Algorithm Dimension:
  - Passive vs. Adaptive Learning
  - Active Learning
    - Certainty-based
    - Committee-based
  - Unsupervised Learning
  - Combining Active and Unsupervised Learning

# Committee-based Active Learning

- Train multiple classifiers using initial training data
- While (labelers/data available) do
  - Label the data in the pool using all classifiers
  - Sort them according to disagreement between classifiers
  - Select the top k of them.
  - Label and add the selected ones to the training data
  - Re-train the classifier
  - Update the pool

#### Committee-Based Active Learning



#### Selected Bibliography for Committee-Based Active Learning

- Seung, Opper, Sompolinsky COLT'92
- Freund, Seung, Shamir, Tishby ML'97
- Liere and Tadepalli AAAI'97 (Text Categorization)
- Engelson and Dagan JAIR'99 (POS Tagging)
- Tur, Schapire, and Hakkani-Tür ICASSP'03 (Call Classification)
- Osborne and Baldridge, EMNLP'03, NAACL'04 (Parsing)

# Part of Speech Tagging

- Engelson and Dagan JAIR'99
- Part-of-speech tagging using HMMs
- Degree of disagreement for sample w: normalized entropy of committee classifications

$$D(w) = -\frac{1}{\log\min(k, |C|)} \sum_{c} \frac{V(c, w)}{k} \log \frac{V(c, w)}{k}$$

Reduced the amount of human-labeled data needed by a factor of 4 using 10 committee members.

### Call Classification

- Tur, Schapire, and Hakkani-Tür, ICASSP'03
- ◆56 call types in total
- Fixed pool
- 2 committee members using 2 different classifiers: SVM and Boosting



# Parsing (HPSG)

- (Osborne and Baldridge, EMNLP'03, NAACL'04)
- A committee of parsers is trained using different and independent feature sets:
  - Configurational (e.g. parent, grandparent, sibling relationships)
  - N-gram (n-grams over tree nodes)
  - Conglomerate (features from phrase structures)
- Cost of manual annotation is not equal to the number of utterances hand-labeled, but is proportional to the number of disambiguation decisions the labelers have to make.
- 73% reduction in the cost of annotation.

### Outline

- Algorithm Dimension:
  - Passive vs. Adaptive Learning
  - Active Learning
    - Certainty-based
    - Committee-based
  - Unsupervised Learning
  - Combining Active and Unsupervised Learning

# Unsupervised Learning

- **◆Goal**: to exploit the unlabeled utterances
  - to train better models
  - to train in a shorter time frame
  - to adapt fast to changes



# Selected Bibliography for Unsupervised Learning

- Blum and Mitchell, COLT'98
- Nigam and Ghani, ICML'98
- ◆ Joachims, ICML'99
- Nigam, McCallum, Thron, and Mitchell, ML'00
- Nigam and Ghani, CIKM'00
- ◆ Ghani, ICML'02
- ◆ Tur and Hakkani-Tür, ES'03
- **◆** ...

### Using EM

- Nigam, McCallum, Thron, and Mitchell, ML'00
- ◆ Train a classifier using human-labeled data (call this prior model: П)
- Add unlabeled utterances:
  - Classify the unlabeled utterances with Π (Estimation)
  - Add this machine-labeled data to the human-labeled data in a weighted manner and re-train the classifier (Maximization)
  - Iterate until model parameters converges
- 3-fold reduction in labeled data needed



# Co-Training

- Blum and Mitchell, COLT'98
- Assume there are multiple views for classification
   e.g. Task: Web-page classification
  - 1. Words in the web-page
  - 2. Words in the hyperlinks pointing to that web page
  - 1. Train multiple models using each view
  - 2. Classify unlabeled data
  - 3. Enlarge training set of the other using each classifier's predictions
  - 4. Goto Step 1
- Halved the classification error rate
- Nigam and Ghani later extended this to Co-EM so that it uses probabilistic labels (CIKM'00)
  118

# Unsupervised Learning for ASR

- Goal: Exploit untranscribed data to improve performance.
- Use of the error signal to exploit the untranscribed data.
- Use of extra information, such as TV captions.
- Combining active and unsupervised learning.

# Previous Approaches

#### AM

- TV captions (Kemp and Waibel, 1998, 1999).
- Accurate portions of the ASR output (Zavaliagkos and Colthurst, 1998).
- ASR output (Lamel et al., 2002).

#### **♦ LM**

- Word confidence scores to extract the portions that are recognized correctly (Gretter and Riccardi, 2001).
- ASR output (Stolcke, 2002).
- ASR word lattices with posteriors (Roark and Bacchiani, 2003).
- Riccardi and Hakkani-Tür (Eurospeech, 2003).



# Unsupervised Learning

$$C(w_i, w_{i+1}, w_{i+2}) = F(C(\hat{w}_i, \hat{w}_{i+1}, \hat{w}_{i+2}), c)$$



# Unsupervised Learning for ASR

• Estimate probabilities from ASR output.



#### Results on 0300 Data

- Initial Set: random 1K H-M utterances (11K words)
- Additional Set: 27K H-M utterances
- ◆ Test Set: 1000 H-M utterances (~11K words)

| Training Set                                         | Word Accuracy |
|------------------------------------------------------|---------------|
| Initial Set                                          | 59.1%         |
| ASR output of Additional Set                         | 61.5%         |
| ASR output of Additional Set, with confidence scores | 62.1%         |

### Experiments with 0300 Data

Initial Set: 8K H-H utterances

Additional Set: 28K H-M utterances(~320K words)

◆Test Set: 1000 H-M utterances (~11K words)

# Results on 0300 Data



# Results on 0300 Data



# Results on TTS Help Desk Data

- ◆ Initial Set: Web and e-mail data (~40 K words)
- ◆ Additional Set: 7,629 H-M utterances (~33K words)
- ◆ Test Set: 2,160 H-M utterances (~9.2K words)

| Training Set                 | Word Accuracy |
|------------------------------|---------------|
| Initial Set                  | 42.2%         |
| Initial Set +                | 50.6%         |
| ASR output of Additional Set |               |
| Initial Set + Additional Set | 61.8%         |

128

#### Results on TTS Help Desk Data

- Data is time ordered and time-dependent data bin is used for selective sampling
- Time window for selective sampling
- Data is only used for unsupervised learning after n days.
- Experiment close to operation modus operandi



#### Results on TTS Help Desk Data



# Unsupervised Learning in Boosting

- ◆ Tur and Hakkani-Tür, Eurospeech'03
- ◆ Train the Boosting classifier using humanlabeled data (call this prior model: П)
- ◆ Augment ∏ with unlabeled utterances
  - Classify the unlabeled utterances with Π
  - Use the top calltype or calltypes exceeding some threshold as the label of that utterance
  - Augment the classifier using unlabeled data changing the loss function so that it fits both
    - the prior model, Π, and
    - the new unlabeled data



# Unsupervised Learning in Boosting



### Outline

- Algorithm Dimension:
  - Passive vs. Adaptive Learning
  - Active Learning
    - Certainty-based
    - Committee-based
  - Unsupervised Learning
  - Combining Active and Unsupervised Learning

#### Combining Active and Unsupervised Learning

- Train a classifier using initial training data
- While (labelers/data available) do
  - Select k samples for labeling using active learning
  - Label and add these selected ones to the training data and re-train the classifier.
  - Exploit the unselected data using unsupervised learning
  - Update the pool.



#### Combining Active and Unsupervised Learning



# Selected Bibliography for Combining Active and Unsupervised Learning

- McCallum and Nigam, ICML'98
- Muslea, Minton, and Knoblock, ICML'02
- ◆ Fur, Hakkani-Für, and Schapire, not appeared yet

#### Active and Unsupervised Learning for ASR



# **Exploiting Untranscribed Data**

X is transcribed text, x and y are n-grams.

$$C(x) = \sum_{y \in X} \delta_x(y)$$

 $\bullet$  X is ASR output, where every n-gram y has a confidence score, c(y),

$$C_{u}(x) = \sum_{y \in X} c(y) \times \delta_{x}(y)$$
$$= \sum_{y \in X} (1 - e(y)) \times \delta_{x}(y)$$

$$= C(x) - \sum_{y \in X} e(y) \times \delta_x(y)$$

# N-gram Confidence Scores

• If we represent each n-gram X as  $x_1, ..., x_n$ , the confidence score of each n-gram can be:

$$c(X) = \sqrt[n]{\prod_{i=1}^{n}} c(x_i)$$

$$c(X) = c(x_n)$$

$$c(X) = \min_{x_i} c(x_i)$$

$$c(X) = \begin{cases} 1, & \text{if } c(x_i) > \text{threshold,} \\ 0, & \text{otherwise} \end{cases} \forall x_i$$

#### Active and Unsupervised Learning Expt

- Initial Transcribed Data: Data collected from web, and Switchboard corpus.
- ◆Additional Training Data: ~30K utterances from the HMIHY?<sup>SM</sup>
- ◆Test Data: 5,171 utterances

### Active and Unsupervised Learning Expt



### Active and Unsupervised Learning Expt



### Call Classification

- Tur, Hakkani-Tür, and Schapire, to appear.
- 56 call types in total
- Dynamic Pool (1/4 of the candidate utterances selected at each iteration)
- Classifier: Boosting
- Combined Certainty-Based Active Learning with Unsupervised Learning



# **Text Categorization**

- Muslea, Minton, and Knoblock, ICML'02
- Co-EMT algorithm:
  - Repeat N times
  - Run like Co-EM to get multiple learners
  - Run like Committee-Based Active Learning to decide on next data to label
- Outperformed both methods applied individually

### **Unbalanced Data Problem**

- Unsupervised Learning changes the priors, too.
- Two issues may cancel each other, because:
  - Active Learning shaves more frequent classes
  - Unsupervised Learning do not favor infrequent classes
- Combining active and unsupervised learning may be a solution to both problems.

#### UNBALANCED DATA PROBLEM



Active Learning **Annotaated Selective Utterances** Sampling (Selective) ASR Model **Annotaator** NLU Model Unsupervised Learning Model **Selective Training** Sampling 147

### Selective Sampling of Untranscribed Data



# Summary

- Adaptive Learning for Speech and Language Processing
  - Active Learning
    - Minimize human supervision by automatically selecting samples to be labeled
    - Optimize data for performance
  - Unsupervised Learning
    - Minimize human supervision by automatically labeling some of the data
    - Improve performance for free (finding unlabeled data is generally not an issue)
  - Combining active and unsupervised learning into a single and dynamic framework

# Open Research Issues

- Selective Sampling and Ranking algorithms
- Predict model error based on selected samples
- AL as optimization problem

# Bibliography

#### **Automatic Speech Recognition and Speech Understanding**

- L. Rabiner and B.-H. Juang. *Fundamentals of Speech Recognition*. Prentice Hall. 1993.
- R. De Mori. *Spoken Dialogues with Computers*. Academic Press. 1998.
- F. Jelinek. Statistical Methods for Speech Recognition. MIT Press. 1997.
- T. Mitchell. *Machine Learning*. *McGraw-Hill 1997*.
- Duda and P. Hart *Pattern Classification and Scene Analysis.* John Wiley & Sons. 1973

#### **Machine Learning**

- T. Hastie, R. Tibshirani and J. H. Friedman. *The Elements of Statistical Learning: Data Mining, Inference and Prediction.* Springer Verlag. 2001.
- Robert E. Schapire. *The boosting approach to machine learning: An overview.* Proceedings of the MSRI Workshop on Nonlinear Estimation and Classification, 2002.
- N. Christianini, J. Shawe-Taylor. *An Introduction to Support Vector Machines and other kernel-based learning methods.* Cambridge University Press. 2000.

#### **Active Learning (General)**

- D.D. Lewis and J. Catlett. *Heterogeneous Uncertainty Sampling for Supervised Learning*. Proc. of the 11th International Conference on Machine Learning. 1994.
- D. Cohn and L. Atlas and R. Ladner. *Improving Generalization with Active Learning*. Machine Learning. 1994.
- I. Dagan and S.P. Engelson. *Committee-Based Sampling for Training Probabilistic Classifiers.* Proc. of the 12th International Conference on Machine Learning. 1995.

# Bibliography

#### **Active Learning with Application to Automatic Speech Recognition**

- Dilek Hakkani-Tür, Giuseppe Riccardi, Allen Gorin. *Active Learning for Automatic Speech Recognition.* In the Proceedings of International Conference on Acoustics, Speech and Signal Processing (ICASSP 2002). 2002.
- T.M. Kamm and G.G.L. Meyer. *Selective Sampling of Training Data for Speech Recognition.* Proceedings of Human Language Technology Conference. 2002.

#### **Active Learning with Application to Natural Language Understanding**

- Gokhan Tur, Robert E. Schapire, and Dilek Hakkani-Tür. *Active Learning for Spoken Language Understanding*. Proceedings of International Conference on Acoustics, Speech and Signal Processing (ICASSP'03). 2003.
- R. Liere and P. Tadepalli. *The Use of Active Learning in Text Categorization.* Working Notes of the AAAI, Spring Symposium on Machine Learning in Information Access. 1996.

#### **Unsupervised Learning with Application to Automatic Speech Recognition**

- R. Gretter and G. Riccardi. *On-line Learning of Language Models with Word Error Probability Distributions.* Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing. 2001.
- T. Kemp and A. Waibel. *Learning to Recognize Speech by Watching Television.* IEEE Intelligent Systems. 1999.
- A. Stolcke. *Error Modeling and Unsupervised Language Modeling.* Proceedings of the 2001 NIST Large Vocabulary Conversational Speech Recognition Workshop. 2001.
- G. Riccardi and D. Hakkani-Tür. *Active and Unsupervised Learning for Automatic Speech Recognition.* Submitted.

# Bibliography

#### **Unsupervised Learning with Application to Natural Language Understanding**

- K. Nigam, A. McCallum, S. Thrun and T. Mitchell. *Text Classification from Labeled and Unlabeled Documents using EM.* Machine Learning. Volume 39. Pages: 103-134. 2000.
- R. Ghani. *Combining Labeled and Unlabeled Data for Multiclass Text Categorization*. Proceedings of the 19th International Conference on Machine Learning (ICML-02). 2002.
- A. Blum and T. Mitchell. Combining Labeled and Unlabeled Data with Co-Training. Proceedings of the Workshop on Computational Learning Theory (COLT). 1998.
- G. Tur and D. Hakkani-Tür. *Exploiting Unlabeled Utterances for Spoken Language Understanding*. Submitted.